
DOCUMENT RESUME

ED 054 214 TM 000 789

AUTHOR
TITLE

INSTITUTION
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

Kirk, David B.
Technique for Approximating the Bivariate Normal
Correlation Coefficient, Rho, and Estimating
Tetrachoric r.
Educational Testing Service, Princeton, N.J.
RB-71-35
Jun 71
18p.

EDRS Price MF-$0.65 BC-$3.29
Algorithms, *Computer Programs, *Correlation,
*Mathematical Applications, Mathematics,
Probability, *Probability Theory, *Statistical
Analysis, Techniques

In this paper a reliable method is found for
approximating the value of the Bivariate Normal Correlation
Coefficient, rho, given values of the joint probability and the
normal deviates, h and k, or the related areas. This technique finds
useful application in the computation of the tetrachoric correlation
coefficient, r, when the underlying distributions may be assumed to
be normal. (Author)



IR

E
S

PA

LL

RB -71 -35

TECHNIQUE FOR APPROXIMATING THE BIVARIATE NORMAL CORRELATION

COEFFICIENT, Vic, AND ESTIMATING TETRACHORIC r

David B. Kirk

U.S. DEPARTMENT
OF HEALTH.EDUCATION & WELFARE

OFFICE OF EDUCATIONrHis DOCUMENT
HAS BEEN REPRO-DUCED EXACTLY

AS RECEIVED FROMTHE PERSON OR ORGANIZATION
ORIG-INATING IT. POINTS OF VIEW OR OPIN.IONS STATED

DO NOT NECESSARILY
REPRESENT OFFICIAL

OFFICE OF EDU-CATION POSITION
OR POLICY.

This Bulletin is a draft for interoffice circulation.

Corrections and suggestions for revision are solicited.

The Bulletin should not be cited as a reference without

the specific permission of the author. It is automati-

cally superseded upon formal publication of the material.

Educational Testing Service

Princeton, New Jersey

June 1971



A Technique for Approximating the Bivariate Normal Correlation

rk'
Coefficient, 0 , and Estimating Tetrachoric r

D. B. Kirk

Abstract

In this paper a reliable method is found for approximating the

value of the Bivariate Normal Correlation Coefficient, p , given values

of the joint probability and the normal deviates, h and k , or the

related areas. This technique finds useful application in the computa-

tion of the tetrachoric correlation coefficient, r , when the underlying

distributions may be assumed to be noL,...
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A Technique for Approximating the Bivariate Normal Correlation

Coefficient, p , and Estimating Tetrachoric

D. B. Kirk

In many psychological studies data may be measured in or reduced to

a two-variable dichotomy. For example, in a testing situation each item

may be scored as correct or incorrect, students may be passed or failed,

etc. In order to estimate the correlation between these dichotomies, the

assumption is made that the underlying traits are continuous and normally

distributed or that they were measured in such a way that a normal dis-

tribution could be used as a legitimate model. The data may appear in

a form similar to the following 2x2 table:

Variable 1

Variable 2

Wrong Right Totals Percentage

Right a b a + b P1

Wrong c d c + d q1

Totals a+c b+ d

Percentage q2 P2

Figure 1

1

The calculation of the bivariate normal r , or tetrachoric r for

the dichotomized case, involves performing an inverse interpolation of the

bivariate normal distribution function:

(1)

(x2+y2-2rxy)
-

co 03 2
L(h,k,r) = I I

h k
1 2(1 -r )

2ffif=-r
e dx dy

since we are effectively given values of L , the standard deviates h

and k , and are required to find r .
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In order to note the correspondence of the 2x2 table with the

integral, we might consider the cell (Wrong, Wrong), in Figure 1,

with a frequency of c or a joint percentage of c/n which

corresponds to the value of L(h,k,r) . The h and k values are

the deviates determined by the areas established by the marginal

percentages q
1

and q
2

of Variables 1 and 2 as illustrated below:

zk

1

h

z

q
2

Figure 2

For purposes of consistency throughout the paper, the joint percentage,

c/n Will be labeled P .

Theoretical approaches to the calculation of r have generally

relied on an infinite series approach. A derivation is given in Kendall

and Stewart [6] that for the 2x2 table

(2)

d

r-Jn
E H (h)-

H
(k)

zhzk
j=0

3! j-1 j-1

where the H. are the Tchebycheff-Hermite polynomials and the zh and
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z
k

are the ordinates on the normal curve as shown in Figure 2. Since,

in a dichotomized situation, the percentages are complementary, the use

of d/n rather than c/n will introduce a corresponding change in the

area calculation.

McNemar's [8] notation includes the restriction that the marginal

areas involved are less than or equal to 1/2 but uses the same expansion.

His formula is

(3)

c
17

z z 2! 3!

glq2 3

- r +
12-

+ (x2 - 1) (y2 - 1) r +
x y

This notation will be followed except that we will use h and k instead

of x and y to indicate the deviates.

The Hermite polynomials, products of which are used in the expansion

as coefficients of rn/n! , are:

Hp (x) = 1

111(x) = x

H2(x) = x2 1

H3(x) = x3 - 3x

and the recursion relationship is

(4) Hn(x) = xlin -1(x) - (n - 1)Hn_2(x) for n > 2 .

Although Kendall warned that series (3) converges very slowly,

McNemar indicated this approach would yield reasonable approxi-

mations except at the extreme values. Since this procedure was not

mentioned in a paper given at the Psychometric Meeting held
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here at ETS in 1969 on the methods of calculation of the tetrachoric

it was the first technique programmed in the present study. It should

perhaps also be mentioned that IBM's Scientific Subroutine package for

the 360 uses the same expansion but limits the series to seven terms.

A Newton-Raphson iteration method was programmed and, since many of the

calculations of terms in the series could be used both for the function

and its derivative, the approach seemed quite sound. Without going into

substantial detail about the overflow and underflow problems involved,

an attempt was made to calculate r for h = k = 0 with a P value of

.477473 for which the true value of r is .99. The program finally con-

verged to .995 but required 47 terms in the series. More terms would

probably have given increased accuracy, but limits of 10
+60

and 10
-60

were

specified by the program to prevent the numbers from becoming out of range

for the computer. Furthermore, 18 iterations were required to calculate

r within a range of .0001 with these 47 terms so, with this rather dis-

couraging information, it seemed desirable to investigate other techniques.

It must be mentioned that for a calculation of this type, with the

desirability of examining the output by varying the number of terms, con-

vergence criteria, upper limits of calculation to prevent overflow, etc.

and with relatively minimal input and output, the use of interactive computing

procedures was virtually a necessity.

At the previously mentioned meeting, a paper on methods of

calculation of the tetrachoric correlation coefficient was presented by

Ernest C. Froemel [3]. Three methods of calculation were examined and a program
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written by David R. Saunders using an algorithm by Ledyard Tucker seemed

to give the best results computationally but required the greatest corn

puting time (naturally!).

The bivariate normal is rewritten in the form

(5)

(h2-2hkx+k2)
1 fr 1 2C-x2 )

dx + (11(12L(h,k,r) =
27 u

- x2

where L(h,k,r) = P as defined by our notation. The integral is then

approximated by the sum:

(h2-2hkx+k2)
n

21
(6) -- E f(x.)ix where f(x) -

1 2(1-x )

47 i=0 11 - X2

The value of Ax is fixed at .0078125 and successive summations are made

until the sum equals P - q1q2 as determined by a change of sign. The

value of nAx then approximates the value of r . The approximation of the

integral by a linear trapezoidal technique is rather fundamental. However,

it is direct, simple, easy to understand, and avoids problems of discontinuity

and overflow and underflow. As a possible improvement, one might be inclined

to use Simpson's rule as a curvilinear approximation and hope for equivalent

accuracy with fewer intervals. However, for our purposes, Saunders' existing

program was converted to double precision and yielded the following results

for h = k = 0 :
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Table 1

Saunders' Program

P Computed r True r No. terms required.

.315495 .399999 .40 52

.411699 .84999 .85 109

.428217 .899988 .90 116

.477473 .989857 .99 127

By virtue of the Summation Method, the discontinuity problem evident

in other techniques is avoided and a numerical, result is assured. This

may be at the expense of additional computing time for a given level of

accuracy, however. Since the range from 0 to 1 is divided into 128

partitions (Ax - 128), the number of terms should never exceed 128.

However, since f(x) is a smooth function over the range involved

one would hope that adequate accuracy for the integral might be achieved

by a shorter method with associated savings.

Since it is necessary to adjust and converge on the unknown upper

limit, assuming we are within an interval of convergence, the Newton-RLphson

method provides a rapidly converging technique. Gaussian quadrature, since

it provides good accuracy with relatively few unequally spaced points, will

be used to evaluate the integral.

Thus letting

(7)

(h2-2hkx+k2)
1 ir 1 2(1-x2)

dxf(r)
ff 0 x2 e

we need f'(r) . It is shown in Courant [2] that if

g2(x)
F (x) = f

l(x)
f(x,y) dv

g
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g2(x)
F'(x) = f f(x,y) dy - gi(x)f(x,gi(x)) + Wx)f(x,g2(x))

g1 (x) A

Consequently,

(h2-2hkr+k2)

(8) f'(r) =
1 2(1-r2)

271 1 - r2

which should give little computational difficulty except for Irl close to 1.

To employ Gaussian quadrature, and restrict the upper limit of the

integral to 1, a scaling or variable transformation u = x/r is made.

Then x = ur , dx = rdu and the integral becomes:

(9)

(h2- 2hkur +k2)

r rl 1 2(1-u2r2) duef(r) =

n (h2-2hkur+k2)
r 1 2(1-u2r2)(10) = E w.g(u.) where g(u)

i=0 _ u2r2

in which the u. are the roots of the Legendre Polynomials, and the w.

are the associated weights for an (n + 1) point quadrature.

After a starting value is determined, successive values are computed

by the Newton-Raphson iteration method:

f(ri) - m
r
i+1

= r.
f' (ri)

where m = (P q1q2). Iteration is continued until

ri+1
1 < C

9
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In the current program version, a five-point quadrature is used with

the following values for ui and w, ,

1

Table 2

Roots of Legendre Polynomials and Associated Weights

i u,
1

w.
1

0 .04691008 .1184634

1 .23076534 .2393143

2 .5 .2844444

3 .76923466 .2393143

4 .95308992 .1184634

The convergence criteria, E , on the successive r. is .0001 and the

number of iterations is limited to 50.

Various techniques for establishing a starting value of r were

investigated, since experimentation showed that not only the speed of

convergence but actual convergence itself was dependent upon a reasonable

starting estimate, even though the derivative is less than 1. The value

finally used:
P 41.1q2r

est zhzk

was taken from the first term of the series expansion, and was restricted

to lie between the limits of -.97 and .97. This approximation works

satisfactorily for most of the cases. However, if the first attempt

fails, an arbitrary r value of .55 is used as a starting value for a

final computation.

Using this technique, the test cases for h = k = 0 yielded the

following results:

10



-9

Table 3

Gaussian Quadrature-Newton Raphson for h = k = 0

P Computed r True r Iterations

. 315495 .40003 .40 2

.411699 .85006 .85 4

.428217 .90015 .90 4

. 25 0 .00 1

.477473 .9949 .99 6

It is evident that by using only a 5 point quadrature and from 1 to 6

iterations we have reasonable results (to 3 decimals except when r > .99), and

we are performing substantially fewer calculations than the Saunders' program.

Consequently, with reasonable success at the h = k = 0 level (for

which L(0,0,r) = 1/4 + arcsin r/27 exists as a closed solution),

Hastings' approximation [4, p. 192] was coded to calculate h and k from

the given areas. The following table illustrates the accuracy of that

subroutine:

Table 4

Hastings' Approximation for h and related z
h

Area (q) h h zh z
h

(Input) (calculated) (true) (calculated) (true)

.5 -1.01 x 10
-7

0 .39894228 .39894228

.158655254 .999968 1 .24197835 .24197072

.022750132 2.000435 2 .0539440 .0539910

.001349898 3.000314 3 .00442768 .00443185

11
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Finally, using the above routine to calculate h and k and the

quadrature-iteration technique for r , we have the following examples for

positive and negative values of r near the extreme values where one would

naturally expect the most trouble.

Table 5

Hastings Gaussian Newton-Raphson Iteration Results

P h k
r

(calculated)
r

(true) Iterations

.25 0 0 0 .00 1

.079328 0 1 3.86x10
-6

.00 1

.011375 0 2 -3.07x10
-6

.00 1

.000675 0 3 2.89x10
-5

.00 1

.00061 3 3 .9003 .90 4

.000031 2 3 .0012 .00 1

.158631 0 1 (see below)a .95

.022742 1 2 (see below)b .95

.001349 2 3 (see below)c .95

.000809 3 3 .9510 .95 4

.477473 0 0 .9949 .99 6

.2420389 0 0 -.0500 -.05 1

.0505413 0 0 -.9507 -.95 4

.0007048 0 1 -.9005 -.90 5

a,b,c
(Using 8 point Gaussian quadrature and slightly more accurate

estimates for h and k , these values converged to .94961, .9502, and
.9511 respectively.)

Note that difficulty occurs when P is extremely close to the area under

the normal curve (as shown in Table 4) for either the h or k . This

corresponds to nearly equivalent cell and marginal percentages in the 2x2

diagram which further implies one of the cells has nearly zero frequency.

Difficulty will also occur for P values extremely close to zero.

12



Conclusion

This study has shown that Gaussian Quadrature supplemented by a

Newton-Raphson iteration technique provides a rapid method by which a

reasonable estimate of tetrachoric r may be obtained. Difficulty ty

occur when marginal percentages and P values are extremely close or

for P close to zero.

Since the satisfactory performance of any entity is dependent upon

satisfactory performance of the components comprising that entity, it

seems worthwhile to examine the major components of this program.

1. The Gaussian Quadrature.

Only 5 points were used in this study which is really a rather

coarse mesh. 10 points will certainly give better accuracy,

and 40 point quadrature is not uncommon. Naturally, this will

be at the expense of computing time and at some point may become

less efficient than the Saunders.' technique. Additional exper-

iments comparing accuracy vs. time may be made at a later time.

2. Estimates of h and k from the Hastings' approximation.

These values also may be made more accurate by an iteration tech-

nique. This probably should be done for critical computations.

For example, a P of .022742 (h = 1,k = 2, r = .95) did not

converge with the current version of this routine, but converged

to .9501 in 8 iterations using exact values for h and k .

For most practical applications, however, it is hoped that three

decimals will suffice for h and k .

13
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3. The Convergence Criterion.

c was set at .0001 for the examples cited in this paper. Although

this may be tightened, it is necessary to realize that the process

is merely converging upon the estimate of r as computed by the

number of points specified in the Gaussian quadrature and not the

true r . It is obviously inadvisable to use an extremely small

convergence criterion with coarse quadrature.

4. The starting value of r .

From the study, it is known that convergence to a solution is

contingent upon a reasonable starting estimate. However, this

sensitivity is probably due more to truncation problems than

estimates falling outside an interval of convergence.

The Program

A listing of the program provides the additional, necessary, unambig-

uous documentation required to complete the paper. It is, after all, thi

program, supporting the analysis, which provides the numerical results.

To reduce compilation costs and increase speed, it was written in BASIC

and programmed on IBM's CALL360 system. The complete program, except for

exponential, logarithmic, and square root routines provided by the system,

is listed at the end of the paper. A translation to FORTRAN is a simple

task for a reasonably experienced programmer.

Input. The input typed in at the console consists of the P value,

the marginal percentages ql and q2 (both < .5), and a test parameter

(1 or 0) to indicate whether iterative calculations are to be or not to

be printed.

14
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Output. If convergence is achieved, the result "OK," tetrachoric

r , h and k , and the number of iterations required are printed.

.If r becomes greater than 1, a flag is set, and the calculation is

repeated with a different starting estimate. A second failure causes a

return to the read statement. At this point the same data may be re-

entered with the test parameter set to 1 to investigate the cause of the

failure.
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The Computer Program

100 INPUT A1oB1,82,T
110 X=0
120 F = B1
130 GOSUB 790
140 H-= E3
150 Z1=E4
160 F = 82
170 GOSUB 790
180 K=E3
190 Z2=E4
200 A = (P1 - B1 *B2)
210 A3 = A*6.283185307
220 R2 = A/(Z1*Z2)
230 IF R2 > .97 THEN 260
240 IF R2 < -.97 THEN 280
250 CO TO 290
260 R2 = .97
270 GO TO 290
280 R2 = -.97
290 IF T=0 THEN 310
300

PRINT"A,A1,A3,131.1,132,H,Z1,K,Z2,R2";A,A1,A3,81,82,H,Z1,K,ZP,R2310 FOR I=1 TO 50
320 U=1
330 GOSUB 700
340 P1 =M6
350 U=.04691008
360 GOSUB 700
370 P2 = .1184634 * M6
380 U = .23076534
390 GOSUB 701
400 P3 = .2393143 * M6
410 U = .5
420 GOSUB 700
430 P4 = 2844444*M6
440 U = .76923466
450 GOSUB 700
460 P6 = .2393143 * M6
470 U = .95308992
480 GOSUB 700
490 P7 = .1184634 * M6
500 P5 = R2 * (P2 + F3 + P4 + P6 + P7)
510 R3 = R2 -(P5-A3)/P1
520 R5=R2
530 R4 = ABS (R2 - R3)

16
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The Computer Program (continued)

540 IF T = 0 THEN 560
550 PRINT "R2sR3sPI,P5"3R2,R3,P1oP5
560 IF R4<.0001 THEN610
570 RP = R3
580 NEXT I
590 PRINT "FAILED TO CONVERGE" R5,R3
600 GO TO 100
610 PRINT "OK";R2,H,K,I
620 GO TO 100
630 X = X+I
640 PRINT"MI NEG,U,R2sR3,P5,P1,A,H,K,M1,I"
650 PRINT U,R5,R3,P5,P1,A,H,K,M1,I
660 IF X=2 THEN 100
670 PRINT "LAST TRY, = .55"
680 R2 = .55
690 GO TO 290
700 M = U *P2
710 MI = 1M*M
720 IF M1 <0 THEN 630
730 M2=2*MI
740 M4 = (H*H + K*K 2 * H * K * M)
750 MS = SOR (I/M1)
760 M8=EXP(M4/M2)
770 M6 = MS * M8
780 RETURN
790 IF F>.5 THEN 860
800 E = SOR(-2.*LOG(F))
810 El = ((.010328*E) + .802853) * E + 2.515517
820 E2 = (((.001308*E)+.189269)*E + 1.432788)*E+1
830 E3 = E E1 /E2
840 E4 = .39894228*EXP(E3*E3/2)
850 GO TO 880
860 PRINT "F>.5";F,RI,B2
870 GO TO 100
880 RETURN
890 END
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